支持本站 — 捐款将帮助我们持续运营

目标:1000 元,已筹:752

75.2%

POC详情: 02478e564cbd60d3d42931df8f93349fb62d1bca

来源
关联漏洞
标题:Citrix NetScaler ADC和Citrix NetScaler Gateway 安全漏洞 (CVE-2025-5777)
描述:Citrix NetScaler ADC和Citrix NetScaler Gateway都是美国Citrix公司的产品。Citrix NetScaler ADC是一个应用程序交付和安全性平台。Citrix NetScaler Gateway是一种安全远程访问的解决方案。 Citrix NetScaler ADC和Citrix NetScaler Gateway存在安全漏洞,该漏洞源于NetScaler Management Interface输入验证不足,可能导致内存过度读取。
介绍
# CVE-2025-5777 Citrix NetScaler Memory Leak Exploit

> [!WARNING]
> This script is intended for **educational and research purposes only**. Do not use it against systems without **explicit permission**. Unauthorized access or testing is illegal and unethical. Read the full [DISCLAIMER](DISCLAIMER.md) before using this script.

## Overview

This project demonstrates a memory leak vulnerability ([CVE-2025-5777](https://nvd.nist.gov/vuln/detail/CVE-2025-5777)) found in **Citrix NetScaler** appliances. The vulnerability results from improper handling of uninitialized memory when parsing malformed `POST` data, particularly the `login` parameter. It's widely known as **CitrixBleed 2** because of its strong resemblance to the infamous [CVE-2023-4966](https://nvd.nist.gov/vuln/detail/cve-2023-4966) (original CitrixBleed) which was heavily exploited in 2023

When the `login` field is included **without an equal sign or value**, a portion of uninitialized stack memory is returned inside the `<InitialValue>` tag in the XML response.

![2025-07-08_23-17](https://github.com/user-attachments/assets/8a64f2c7-d156-48b3-ba29-97f0b78bc646)


**Data Leaked:** Each HTTP request can leak approximately 127 bytes of RAM content. By repeating these requests, attackers can collect sensitive data from memory, which may include:
* Session tokens (allowing session hijacking and bypassing MFA).
* Authentication data.
* Portions of previous HTTP requests.
* Plaintext credentials.
* Other sensitive information.

## Script Usage

### Requirements / Dependencies

```bash
pip3 install aiohttp colorama
```

### Run the script

```bash
python3 exploit.py <URL> [options]
```

### Command Line Options

```
positional arguments:
  url                   Base URL (e.g., http://target.com)

optional arguments:
  -h, --help            Show help message
  -v, --verbose         Enable debug output
  -p, --proxy PROXY     HTTP proxy URL (e.g., http://127.0.0.1:8080)
  -t, --threads N       Number of concurrent threads (default: 10)
  -d, --delay SECONDS   Delay between request batches in seconds (default: 1.0)
  --max-requests N      Maximum number of requests to send (default: unlimited)
  -e, --endpoints PATH  Additional endpoints to test (can specify multiple)
  --no-save             Don't save data to files on exit
```

### Examples

**Basic usage:**
```bash
python3 exploit.py http://target.com
```

**Verbose mode with proxy:**
```bash
python3 exploit.py http://target.com -v -p http://127.0.0.1:8080
```

**High concurrency with rate limiting:**
```bash
python3 exploit.py http://target.com -t 20 -d 0.5
```

**Limited requests with multiple endpoints:**
```bash
python3 exploit.py http://target.com --max-requests 1000 -e /p/u/doAuthentication.do /api/auth
```

**Help:**
```bash
python3 exploit.py -h
```

### Advanced Features

This enhanced version includes:

#### 🔍 **Pattern Detection**
- Automatically detects session tokens (NSC_*, NSC_TASS, NSC_AAAC patterns)
- Identifies credentials (username:password, Basic Auth)
- Finds IP addresses, email addresses, URLs
- Detects Base64, hex strings, JSON data
- Highlights patterns in hex dump output

#### 📊 **Statistics Tracking**
- Real-time statistics display
- Success rate, leak rate, error tracking
- Bytes leaked counter
- Unique leak detection (MD5 hashing)
- Pattern detection counts

#### 💾 **Data Collection & Export**
- Automatic data saving on exit (Ctrl+C)
- JSON export with full metadata
- CSV export for spreadsheet analysis
- Separate session tokens file
- Raw leaks text file
- Timestamped output directories

#### 🎯 **Session Token Extraction**
- Automatic detection of Citrix session tokens
- Deduplication of found tokens
- Separate storage and export of tokens
- Token count tracking

#### 🔐 **Credential Extraction**
- Basic Auth decoding
- Username:password pattern detection
- Credential storage and export

#### 📈 **Enhanced Output**
- Color-coded hex dumps
- Pattern highlighting in output
- Detailed leak summaries
- Periodic progress updates
- Comprehensive statistics on exit

#### ⚙️ **Advanced Configuration**
- Multiple endpoint testing
- Configurable request limits
- Adjustable delays between batches
- Better error handling and recovery
- Graceful shutdown with data saving

### How it works

This advanced Python script:
- Sends repeated malformed POST requests to vulnerable endpoints
- Parses XML responses for `<InitialValue>` tags
- Extracts leaked memory content
- Analyzes data for sensitive patterns (tokens, credentials, etc.)
- Displays results in enhanced hex-dump format with highlighting
- Tracks statistics and unique leaks
- Automatically saves collected data in multiple formats
- Supports proxying, threading, rate limiting, and verbose output

## Impact

* **Session Hijacking:** The primary concern is the theft of session tokens, which allows attackers to hijack active user sessions and gain unauthorized access to critical systems, even if multi-factor authentication (MFA) is enabled.
* **Bypassing Authentication:** Stolen session tokens or credentials can be used to completely bypass the authentication process.
* **Data Disclosure:** Sensitive information residing in memory can be exposed.

![Screenshot 2025-07-08 232248](https://github.com/user-attachments/assets/74d0170e-84cb-4578-bc70-6e0770c83905)


## Defense & Mitigation

* [Update](https://support.citrix.com/support-home/kbsearch/article?articleNumber=CTX693420) to the latest secure firmware immediately.
* Monitor for abnormal POST request patterns.


## Reference

* [watchTowr Blog Post](https://labs.watchtowr.com/how-much-more-must-we-bleed-citrix-netscaler-memory-disclosure-citrixbleed-2-cve-2025-5777/) - *Original analysis*
文件快照

[4.0K] /data/pocs/02478e564cbd60d3d42931df8f93349fb62d1bca ├── [1.6K] DISCLAIMER.md ├── [ 18K] exploit.py └── [5.6K] README.md 1 directory, 3 files
神龙机器人已为您缓存
备注
    1. 建议优先通过来源进行访问。
    2. 如果因为来源失效或无法访问,请发送邮箱到 f.jinxu#gmail.com 索取本地快照(把 # 换成 @)。
    3. 神龙已为您对POC代码进行快照,为了长期维护,请考虑为本地POC付费,感谢您的支持。